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OPTIMAL LINEAR APPROXIMATION IN PROJECT COMPRESSION

S.E. Elmaghraby and A.M, Salem
North Carolina State University
Raleigh, N.C. 27650

ABSTRACT

When the cost of reducing the duration of activities is convex
and nonlinear, it may be advisable (to reduce the computing burden)
to seek a "satisfising'" answer, in which the project is "compressed"
to a desired completion time with prespecified tolerable relative
error. We treat the problem of constructing the optimal first degree
interpolating linear spline that guarantees such maximal error, and

consider various possible refinements.
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OPTIMAL LINEAR APPROXTMATION

IN PROJECT COMPRESSION

S. E. Elmaghraby and A. M. Salem
North Carolina State University
Raleigh, NC

INTRODUCTION

A significant recent trend in the study of activity networks
(ANs) is the shifting of focus from insisting on achieving the opti-
mum to requiring only approximations that deviate from the exact
results by a known (perhaps predetermined) error; i.e., satisfising
instead of optimizing. In the overwhelming majority of cases,
asking for an approximation is more realistic than demanding the
exact answer because of the very approximate nature of the input
data.

It is a truism that project compression under linear or piece-
wise linear cost functions of the form C(y) = b - ay; & <y < u;
a,b > 0 is considerably easier to resolve optimally than under
nonlinear cost functions. The analysis of [ 2] and [ 3], carried
under the simplifying assumption of quadratic cost functions, should
amply demonstrate this fact, if such demonstration were needed! The
natural question then is: What if C(y) is not quadratic, though
still convex decreasing as y increases from £ to u? For instance,

suppose
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Cly) =a/(b+ry) 5 0<% <y<u<e ; abyr>0 (1)

What can be said about the optimum in this case? '
One may wish to persist in applying the theoretical con-

structs of [2] and [ 3], which are indeed applicable in toto.

Unfortunately, the Kilter Diagram (which is simply the plot of the

derivative, -dC/dy versus the duration y) will now possess a nonlinear

segment in region R, as shown in Fig. 1 for C(y) of (1), which would

necessitate the solution of a system of nonlinear equations in the

Figure 1 approximately here

”flows"'{fij} at each iteration; an onerous task at best.

The other alternative is to approximate the cost function
C(y) by a continuous piecewise linear and convex function (i.e.,
linear spline) that is "optimal'" in some sense. There are two
immediate questions that present themselves: The first is to
define the criterion of optimality of the approximation, and the
second is to define the sense of the approximation itself.
This paper answers these two questions, then proceeds to demonstrate
the application of these answers to achieve the desired approxima-
tion.

Although our discussion is couched throughout in the ver-

nacular of ANs, the approach has broad applicability to a wide class

of convex separable programming problems.
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THE CRITERION

Let C(y) be a nonlinear convex decreasing function on [£, u].

Let the points Yoe¥ys =+ oY satisfy & = Yo <Y, <. 0 . <Y

1 n

<y =uand let ¢c,, 1 <i <n + 1 be arbitrary real numbers.
n+l i - -

n+l

Define
h(Y) = Ci"l + (ci - ci-l) ()’ - Yi_l)/(yi = Yi_l) (2)
for ye[yi_l,yi] » 1<i<n+1

Then h is a continuous piecewise linear function called a first
degree spline with knots'{yi}, 0 <i <n + 1 that joins the points

(yi, ci), 0 <i<n + 1, Since the knots Yo and Yne1 2T fixed, the

+1
problem is to choose the (variable) knots DS TEEEEEEEN A and the
ordinates CgsCps o = » 5Cp . SO that the corresponding spline h is
as close to C as possible in the sense of the uniform norm; that is,

we choose h to minimize the maximum error:

min: ¢ = max |C(y) - h(y)|
ve[L, u]

fc-n (3

where h is a first degree spline with n-1 variable knots in the
interval [, u]. 1If such an h exists, it is called a best
Chebychev (uniform, minimax) variable knot first degree spline (FDS)
approximation to C on [f, u]. The value of ¢ is called the error

or deviation of the approximation h.
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Traditionally in spline approximation the values at the knots

satisfy
¢; =Clyy) , O0xizns+l (4)

In this case, h is called a first degrze interpolating spline (FDIS).

If a spline h exists which minimizes (3) and satisfies (4), we call
h a best Chebychev variable knot interpolating spline approximation
to C on [2, u]l. If we relax the restriction that c, = C(yi),

0 <i<n+1, then we call h a best Chebychev first degree approxi-

mating spline (FDAS) with variable knots. Three important facts
that are known about optimal Chebychev splines are worth recalling
because of their relevance to our subsequent development:
1. The errors in all segments of the approximation are
equal [5].
2 The maximum error in FDIS is exactly twice that in FDAS,
which yields the least error.
3. For purposes of optimization, we may use any linear spline
approximation that differs from the FDAS by a constant

(the so-called "simple linear translation') [4].

Consequently we shall deal exclusively with FDIS. This choice

will become even the more advisable as our discussion progresses.
In ref. [ 6] Salem gives elementary constructions, both
graphical and analytical, for the determination of the optimal FDIS

(and FDAS) that guarantee an error of value e. (As a consequence,

the number of knots is variable.} For our purposes, we briefly state

L-‘i
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the concepts underlying his graphical approach to the determination

of the FDIS. The reader should have no difficulty in constructing the
analytical procedure, which follows the graphical construction rather
faithfully, and is stated in full detail in [6]. (In fact, we do
just that for the specialized cost function in the example below.)
Suppose that C(y) is plotted to some reasonable scale, as

shown in Fig. 2. From the left-most point (£; C(2)), drop an e and

Figure 2 approximately here

draw a tangent to the function C(y); and ‘rum the point (£; C(2)),
draw a parallel line to that tangent to intersect C(y) at the point
(yl,C(yl)). This is the first segment of the FDIS. The construc-
tion is now repeated starting with the point (yl,C(yl)); and is
stopped when the upper limit u is reached. This "last segment" of
the linear spline bears close scrutiny, since it may lead to further
improvement in the approximation. We shall do this later, but for
the moment it should be evident that the above construction yields

a FDIS whose maximum deviation from C(y) is at most €. (The maximum

deviation in the last segment may be strictly < ¢.)

THE SENSE OF APPROXIMATIONM

Our concern is next focused on defining the sense of approxi-
mation that is appropriate for our application, and on determining
the values sij;(ij)eA, that realize it.

Recall that the problem of optimal project compression may

be stated mathematically as (see, e.g., ref. [1]):
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Program P: Minimize C(y) =

]
o

Subject to t.l -t +ty.. 3 (ij)eA (6.1)

J 1)

- t, + tn = T (6.2)

L., <y.. <u,. (6.3)

Because of the difficulty in a frontal attack on Program P because
of the nonlinearity of the objective function, we propose to approach
. i it through approximating each individual Cij(yij) by a FDIS, denoted

by hij(yij]' Thus we define the following surrogate program:

N
Program S: Minimize H(Y) = 2, hij(yij) (7N
(i3)eA

Subject to: (6.1) - (6.3)

Let v(P) and v(S) denote the minima of their respective programs,

There are two possible criteria that measure the '"goodness" of this

approximation:

‘? Criterion 1: Find Eij’ (1ij)eA, such that the absolute deviation from

the exact optimum is bounded by & :
lves) -v)| <8 5 8>0 (8)

Criterion 2: Find eij’ (ij)eA, such that the rclative deviation from

e A e -

the exact optimum is bounded by w :

., T

) -ve)lZlvie)] <w 5 w>0 , Jv(P] >0
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In (8), the scalar 6 is an "absolute'" measure since it has

the same dimension as the function C (say dollars), while the scalar
w of (9) is dimensionless since it represents the ratio of the (abso-
lute) error of approximation to the minimal value of program P;
typically we[.01, .10]. Clearly, Criterion 1 is useful when the
analyst has a fairly precise idea about the value of v(P) on which
he can base the value of 8. Criterion 2, on the other hand, is free
of such prior knowledge, since it requires only the specification of

a tolerable relative deviation from the optimum of program P (a

; "satisfising" relative error) whatever that value may be.

Consider Criterion 1: We wish to find Eij such that
lvis) - v(P)| = v(S) - v(P) <&

The reader will now realize the added rationale for choosing the
FDIS, which enables us to replace the absolute difference by the

. . - : <
straight difference, since hij(yij) i-cij(yij) for zij < yij —-uij'

DRI WY
' v(s) = (lﬁ) hi; (i) 2 - ;50550 2 (ij)cii (y;;) = v(P), where

Y and Y* are the optimizing vectors for Programs S and P, respectively.

But

v(S) - v(P) = min :E: hij(yij) - min ZE: Cij(yij)
ye (ij) ye@ (i)

where Q is the space of feasible solutions defined by (6.1) - (6.3).

If the optimum of program S is realized at €, and the optimum of
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program P is realized at Y*, then for each activity (ij) the contri-

~ * - . -
bution to the difference is hij(yij) - Cij(yij)’ which is obviously

< Eij. Consequently, we conclude that

A
v(s) - vip)y| < | ya eij‘ = Z {Eij‘
(ij) (ii)

Theretore, by taking eij = §/m inequality (8) will be satisfied,
where m is the number of activities in the network, m = [Af.
Next, consider Criterion 2, which is the one adopted hence-

forth. B8y construction of the FDIS,

Summing overall (ij)eA,
S AN <
Minimizing both sides of the inequality results in

v(S) <v(P) + Z €55 10)

which we rewrite as
v(S)/v(P) <1 + :E:eij/v(P) s v(P) >0 (10%)

Actually, € should be written (eij[w), and v(S) should be written
(V(S)I{eij}), since Cij is indeed a function of w, and v(S) is a

function of the errors {eij}. We forfeit such rigor of expression

for the sake of clarity of exposition.
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From the statement of Criterion 2, we have
v(S)/v(P) <1 +w (11)

Equating the r.s. of (10) and (11), and assuming for simplicity (see
below) that eij = g, the same value for all activities, we conclude

that
e <w.v(P)/m ; m= |A

Since the value of v(P) is not known, any lower bound on that value
will yield a more '"conservative'" g. Such a lower bound is immediately
available i N C..(u..), and we put
noo/y M50 ep
(13)

€ = w.C(UW/m < wov(P)/m (12)

where C(U) = :E: Cij(uij)' This is the € to be used in the deter-
(ij)
mination of the Chebychev-optimal FDIS.

Once the approximate problem S is solved and the values Y

and v(S) are in hand, one may obtain the a posteriori bounds

v(s) - z ey S V) <OV 13)
(i3]

The right inequality is evident from the fact that Y 1is a feasible

point of P; the left inequality follows frem (10),
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Two Issues
Thus far we have left two questions unanswered; they are:
(i) How does one cope with the last segment of the linear spline if
it generates an error less than e, and how docs one use such a fact '
to refine the approximation? (ii) How would one proceed if one
desires to weigh the various activities differently, as reflected
in the permissible error Eij?
Rather than clutter this paper with a mass of symbolism and
formulas that will undoubtedly mask the rather clementary nature of
the response to these two issues, we prefer to respond within the
context of a numerical example that is deliberately chosen for its
simplicity and tractability. The reader should have no difficulty
in extrapolating to more complex functions. Indeed, many of our
formulas developed for this simple example are directly applicable

to others, as wec shall demonstrate.

: NUMERICAL EXAMPLE

v Perhaps the simplest nonlinear convex decreasing cost function
‘ is a quadratic with continuous derivative over [0, «] of the form

a + B(u - y)z. Consider a project network with such activity cost

and other data given in Table 1 and Fig. 3,

A

Table 1 approximately here

v T A A TR oty 4 B TN R Pt <
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Figure 3 approximately here

This problem was solved optimally by the methods of [ ]; the

optimal compression function is shown in Fig. 4.

[ Figure 4 approximately here

Now it is desired, for purposes of illustration, to solve the
problem by approximating the cost function Cij(yij) = aij + Bij (uij -
yij)2 using the algorithm for finding the best FDIS., The error ¢
is to be chosen to guarantee that the optimum value of the approxi-
mating program does not deviate from the optimum value of the original
problem by more than 10% of the true optimum, i.e., we are adopting
Criterion 2 with w = 0,10,

It is easy to see that the graphical construction of Fig. 2

can be translated into the following analytical steps:

1. Determine }k (the point of maximum error in the kth segment of

the approximation) from

we

€@ +e-co¥hygt -yl = oeh
k=1,2, . « « (14)

where C'(}k) = dC/dy y= ;k. For the case C(y) = a + B(u - y)z,

the above expression yields




e -

e

Yt aveTs o Y= (14"

and the slope of the line segment between yk-l and yk is given

by
cr%y = - 28(u - YU - VETE) (15)
2. Determine yk (the end point of the kth segment) from
co® - co*Hok - = oah (16)
For the above quadratic, this yields
eyl 2 TR (16")

Finally, using (12) with w = 0,10, m = 5 and C(U) = 11 (=j€:aij)
we have ¢ = 0,220,
Substituting for this value of ¢ and the other network parame-

ters, we immediately deduce the linear splines given in Table 2.

Table 2 approximately here

To help interpret this table, consider arc (2,3): The spline
has four segments as shown in Fig. 5, with the given knots and slopes.
The variable is now replaced by the four variables x X X

Y2,3 P y 12° *13° *14
and X5 whose coefficients in the (linear) criterion are precisely

the corresponding ''slopes'" of Fig. 5.

» - .
D ¥
.\_—' - .
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Figure 5 approximately here

Program P in the original variables {yij} is now translated

into the approximating linear Program S:

Minimize H(TS) = 93 - 7.062 X - 5.187 x, - 3.310 x

2 3

1.434 x

- .25 Xg - . 9062 7.186 x

4 7

5.310 Xg = 3.434 Xg - 1,560 X109 - . 323 Xi1

5.062 X1 = 3,186 x., - 1.310 x

2 13 14

- 5,187 x

17

- .188 Xy = 7.062 X16

- 3.310 x 5 ~ 1.434 x o - .25 X,
- 7.062 X5y = 5.187 Xyy = 3.310 X,z
- 1.434 Xoq = .25 Xyg
Subject to:
tl - t2 + x1 + xz + x3 + x4 + xS < 0
BTttt X Xy v Xyt Xt Xypt Xy 20
BT B3t Xt Xzt Xty 20
Bt Xt X7t Xig X9 P X 2 Ts 5ty
B3 Xg) Y Xpp tXpz v Xyt X5 2 Ty
Xp Xy * Xg X, + Xg < 4
Xg * Xg * Xg * Xg * Xyp Xy 205

~




14
<
X2 "Xzt Xt Xy 203
x16 + x17 + x18 + x19 + x20 < 4
Xo1 Y Xpp t Xzt Xpq t Xps 04

< .248; x < .248; x,. < .248, and

n - 25 =

~
A

.938, for all other 1i; X, > 0, fcr all i.

This LP was solved for the three values of TS given by the
"breakpoints" in the optimal compression function of Fig. 4, namely
TS = 8, 6.75 and 4, The results are given in Table 3, which contains

*
one additional result for comparison, namely the column labeled L (TQ).

Table 3 approximately here

This column gives the optimal solution under the '"crude'" linear
approximation of each function by the single line segment joining
the two end points of Cij(yij) (see, e.g., Fig. 5). The values of
the absolute error between the ''true" and '‘approximate" optima arec
given in column 5; and their relative magnitudes (to the 'true"
optima) are given in the last column. The latter are seen to be well
within the 0,10 specified tolerahle error. Their small values are a

reflection of the conservatism induced by having bared the value of

e on the lower bound C(U); see Eq. (12). {
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Table 3 contains one additional piece of information, namely
the a posteriori hounds on the optimum C*(y); see Eq, (13). The
bounds are rather good, and they do indeed contain the ''true" value.

It is also instructive to compare the optimal activitv dura-

.(y..): The original

jj
quadratic function, the FDIS, and the "crude' linear approximation.

tions under the three representations of Ci

This is given in Table 4.+ It is evident that the differences among
the activity durations remain significant throughout the ranges of
TS between the '"Quadr.' and Linear Spline' on one hand and the
"Crude Linear'" on the other, with the difference between the first

two being rather small,

Table 4 approximately here

We are now ready to respond to the two issues raised above.

The Last Segment and Improved Approximation

First, there is the question of the ''last linear segment' of
the spline that terminates at u. A glance at Fig. 5, for example,
and some simple calculations reveal that this last segment (in the

interval [2.814, 3]) has a maximum error of onlv ,008649, a far cry

+The fourth column under each TS, labeled "Improved Linear Spline",

will be explained below,
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from the allowable value of € = 0.220, Consequently, we may obtain
a smaller error e throughout the range of y if we insist on adding

one more restriction to the FDIS; namely, that it terminatcs on the

function Cij(yij) 23.2253 gij and uij while utilizing the same number
of’ knots, The existence of such spline is guaranteed by the finite-
ness of the range of yij's.

Fortunately, for the quadratic cost function adopted in this
example, the analytical determination of the optimum FDIS satisfying
this additional condition is rather elementary. (This was another
reason for the adoption of this particular cost function.)

Consider the first segment of the FDIS between y0 and y]. It

is easy to see that (see Fig, 3):

1 0
R N AL IR (L NI CA ) I
y -V

v = % an
5
But, since C(y) = a + 8(u - y)~, we have

1

C(yl) - C(yﬂ) = B(YO - yl)(2u - yn -y

and similarly,

¢y -co® =ee? -3 2u -y - 5h

Substituting in the expression for el, we obtain

1 0 -1, .-
e = B(y - yl)(y1 - yl)
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-1
But ¥  is the point at which the tangent to C(y) is parallel to the

line segment; i.e.,

1 0
dc(y) - sy, _CQy) - Cly)
——-55—)&)-,1 =-28(u-y) = T
y -y
= -8 -y -¥h (18)

yielding the relation between 91 and y1 (recall that y0 is fixed

at 2):

7' = o0+ v

Consequently,
1 0
1 - 2
€ = B(L.—Z._Y__)
By a similar argument, we can easily deduce that, in general,
K k k-1 2
€ = B(X—~f9L——0 s k=23, .. . ,n+]

. . s . . kK _ a
Now we impose the desired conditions, which are three: (i) ¢ = ¢,

a constant for all k; (ii) yO = £; and (iii) yn+1 = u. They com-

pletely determine the value of e¢. We proceed recursively:

m
1]

1 V2 - 1
B(L—E——) = g y 2 /EJE + 1

]

m>

=
2 1
e’ = L5297 - = Y =2/TE .y

2 x 2/e/g + 2
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K kw1, k Tq
and in general € = B(X———??———q = vy * kx 2/E/B + 2

Finally, we have yn+1 = u= (n+1) x2 Ye78 + 2

which vields

¢ = Blyiny) a

This is the new value of € to be used in the construction of the
FDIS for this activity. Note that now the maximum error of approxi-
mation may be different for different activities.

To illustrate, consider once more activity (2,3) of Table 1
and Fig, 5: We have n = 3 knots, 8 = 1, u = 3 and £ = 0; hence

(3/8)2 = 9/64 = 0.140625 (compare with the previous value of

M
"

0.220), With this value of €, straightforward substitution in

"

€

Eqs. (14), (15) and (16) yields the following Table 5:

[- Table 5 approximately here

The new knots and slopes for the various I'DIS's of the project
of Table | are given in Table 6., Of course, the number of x-variables
for each activity remains the same as hefore, though their ranges and

coefficients in the linear criterion are now different, The new

Table ¢ approximately here
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program, denoted by §, was solved for the same three values of TS

as before, namely, TS = 8, 6.75 and 4.00, and the optimum values are
summarized in Table 7, together with the corresponding values for
the "true'" optimum and for the "original' FDIS. As to he expected,
the absolute and relative errors are smaller than before. Moreover,
the bounds on the optimum (also given in Table 7) are much sharper.
(For comparison, see Table 3.) The optimum durations of the activi-
ties at these various target completion times have been included in

Table 4 to facilitate comparison with other conditions.

Table 7 approximately here

The development thus far responds completely to the question
raised concerning the '"last segment of the FDIS" when the individual
activity cost function is convex decreasing, quadratic and with
continuous derivative for ye[%,~]. Extension of the approach to
quadratic cost functions that possess discontinuous derivative at
y = u (the case treated in ref. [2]) is straightforward and will not
be elaborated upon here.

Such is not the case, however, for general cost funetions
that are convex decreasing in the interval ({2, u], such as the
function C(y) of (1). The reason is that now we may have to deal
with nonlinear equations to determine the new value of &, though the
logic of derivation implied by Eqs. (17) and (18) remains applicable

in toto. In such instances, the application of simple iterative
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schemes yields the desired result in a few iterations. Indeed,
bounds on the locations of the new knots {yk}:;i are easily deter-
mined by applying the graphical (or analytical) construction of
Eqs. (14)-(16) starting from the point (u,C(u)) rather than the
point (2,C(%)).

The concepts of iteration are best illustrated by example.
Consider again the simple network of Fig., 3, and suppose that the
activity cost functions are given by Eq. (1). Elementary calcula-
tions (see also ref. [6 ], pp. 219-225) following the logic of
Eqs. (14)-(16) yield:

e v e-co®h ey -k

- k-1 -
Pk -y

Substituting for C(y) = a/(b + ry) in the above equation yields

a/(b + r?k) + ¢ - a/(b + :yk-¥)
-k k-1
y y

-k.2
= -~ ar/(b + ry)“

or

(e - a/(d + ry* D] b + 1797 + /b + 155

-k k-1
<-ar 5° -y )

This is a quadratic in (b + r?k) whose solution yields

1/2
v DD I

Fel-a-@ieam s iy e - a o+ k!

k-l)

r(e - a/(b + ry ) - b/r

yk-l).

(choosing the root that yields ?k >




"
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Determine

ot = Ct(y) = ~ar/b + 1792

=k
y=y
k
and compute y from

k
y

- (ar + mkb (b + ryk'l))/mkr (b + ryk—l

it

)
k .. k-1
If y© > u stop and the last segment of the FDIS joins C(y

Cy™ and C(u), i.e., put y™! = u,

E

To illustrate, assume the parameters are as given in Table 8,
which is constructed so that the cost function satisfies the (rea-
sonable) condition that would permit comparison later on with
previous results, namely, that C(y) passes by the points C(2) and
C(u) of the quadratic cost function, o + B(u - y)z. It is easy to
see that the cost function C(y) = a/(b + ry) may be written, for
simplicity, as C(y) = a'/(1 + r'y) when both numerator and denominator
are divided by b. Since gij = 0 and 8 = 1 for all activities in this

example, this condition yields:

c(0)
C(u)

a' = C(0) and ' = % [ - 1], resulting in

a = aC(0) H b =q H T =1u 19

Table 8 approximately here
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For notational simplicity, we refer to the knots and errors
that result from starting the spline at the point (£,C(%)) as result-

ing from forward iteration, and to the knots and crrors that result

from starting the spline at the point (u,C(u)) as resulting from

backward iteration.

For illustration, consider once more activity (2,3):

Ca(y) 2, which yields (see (19) above) C(y) =

Q 2,3)

10/(1 + 3y). Forward iteration is started with the original error

1+ (3-vy

of €y = 0.22, which results in five segments as shown in Table 9.

(Compare with only four segments of the quadratic cost function.)

Table 9 approximately here J

Two remarks are relevant to Table 9, First, the unrestricted
last segment of the FDIS '"overshoots" the upper bound on the activity
duration by a considerable amount. Therefore, it must be truncated,
resulting in a much smaller error than €y

Second, it is rather easy at this juncture to derive bounds
on the locations of the knots through backward iteration [i.e., start-

ing with spline at the point (u,C(u)) and proceeding "backwards' to

the point (2,C(%2))]. This is accomplished in Table 10 for the same

value of €y = 0.22.
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Table 10 approximately here

The bounds on the location of the improved knots are shown in Fig. 6.

p—-
Figure 6 approximately here

The easiest iterative scheme is to put the new value of the error €

. . . . 1
equal to the average error in the previous iteration.  Therefore,

ST
put €, = - e;/S = 0.192372, The result is an improved spline
k

(still of five segments) as shown in Table 11,

Table 11 approximately here

4

o ET/S = 0,187169, and obtain the

e

We iterate once more with S, 7

H

o

values shown in Table 12.

1'Alter'nativc schemes, such as choosing the end-points of the
just-determined intervals of the knots, were not systematically

investigated.

ot e e A —— > " o<TINEvS




Table 12 approximately here

The deviation from £, in the last segment is 0.000755 or approxi-
mately 0.4%, and iteration may very well stop here. (In a computer
program, one would pre-specify an "acceptable" deviation in the error

at which iteration is terminated.) We decided to do one more itera-

tion with e = ﬁlJeE/S = (.187018. The results are shown in Table 13,

{ Tahle 13 approximately here

[N

To be sure, the final knots are within their respective bounds estab-
lished by the forward and backward iterations; see Fig. 6. (For
example, v} o= . 113978e[0.069616, 0.126214), y2 = 0.298232€[0.241950,
0.340470], etc.)

The complete (improved) FDIS's for all five activities are
given in Table 14, obtained by similar (forward) iterations over the
values of the error Eij’ To be sure, the final errors achieved are

all smaller than the starting error of ¢, = 0.22, and they differ

0
from activity to activity. The optimal solutions at the three
"breakpoints' are given in Tahle 15, together with the respective

bounds on the '"true' optimum values hased on them and on the value

2., €.. = 0.920068.
(1))




sensitive to the form of the assumed activity time-cost trade-off

Table 14 approximately here

Table 15 approximately here

The following remarks are pertinent.

It is evident that the cost of project compression is quite

function, contrary to the common lore. For instance , at TS = 6,75,
the cost of the project varies from a low of 13.84 for the FDIS to
the (steeply) convex cost function of (1); to 17.44 for the quadratic
convex cost function a + 8(u - y)z; to 17.70 for the FDIS to it; to
17.85 for its "improved'" FDIS; to, finally, 27.25 for the 'crude”
linear approximation!

Though we have not conducted the requisite empirical investi-
gation, it is our belief, on the basis of limited evidence, that the
ratio of cost between the "crude' linear approximation and that ot
Eq. (1) will be significant ( > 1.25). (Of course, this depends on
the amount of compression required. In the above example, the dura-

tion was reduced by approximately 40%.)

The Differential Weighting of Activities

We remind the reader that this is the second question raised

under "Issues' above., It is possible, in some application, that

i
{
i
!
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large errors will be tolerated in some activities but not in others.
This differentiation among activities may be implemented by specify-
ing a "tolerable" ratio between any pair of errors. This will
introduce a slight modification to the development of Eqs. (10)
through (12). In particular, we now write eij = a,.t, aij > 1 and
let A = a... Then we have
(13)
v(S)/v(P) <1 + Ae/v(p) ; Vv(P) >0

which results in

€ :_w.C(U)/A and eij = aije (20)

where, as before, C(U) = [/, Cij(uii)'
(1i) :

As illustration, consider the simple network of Fig. 3 which
has served as our vehicle thus far, and suppose that the weighting

of the activities is in the ratio: Yi.2 P Y1.3 2 Y233 Y 4 Y34
2 > ™ b 7y

=1:2:1:1¢: 3. Then A = 8 and, for the parameters given in
Table 1 and with w = 0.10, we obtain ¢ = (0.1x 11) + 8 = 0,1375,

Whence ¢ = 0.1375 = ¢ = 0,4125,

1,2 = 0,2650 and ¢

2,3 " €2,4° ®1,3 3,4
From this point onwards, the procedure of spline approximation follows
identical lines to those of either the FDIS or the improved FDIS,

and will not be repeated,
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Table 1
Activity Qij uij | Cij (yij)

T 2

(1,2) 0 4 (4 - Yy 2)
2

(1,3) 0 5 (5 - Yy 3‘)
2

(2,3) 0 3 (3 - Yo 3)
2

(2,4) 0 4 (4 - Yo 4)
2

(3,4) 0 \ 4 (4 - Y3 4)




. . . . . JUSUIbeS 3ISeT
9L£STO"0 9LESTO"0 6¥9800°0 $Z0¥Z0° 0 SLESTO'0 | 13 rormm -xew
00°LT 00°8T 00° 0T 00" 62 00° 6T 0 3e anfea
. . [ ¢
00" b 00" ¥ 00°€ 00" 00" b o
- q - - - - - ezeto- | x - - [829°S ‘069" ¥]
osz'o- | S%x 05z o- | 9x - - 095-1- | 9x 052" 0- x [069°% ‘Z5L°€)
vep T- | Tox vy - | ®lx 8810~ STy veb g~ bx Py T- Ix (zsL€ ‘v18°2)
otee- | £%x otee- | 8lx 0TE " T- iy 0TE G- 8y orete- | Ex (b18°Z ‘9£8°T)
181°6- | %x 181°s- | Llx 98T"€- £k 98T L~ Ly L8T°G- x [9.8°T ‘8€6" )
290"~ | Tex z90°L- | M 290" G- (45X z90°6- | Ix 290° (- Tx [s€6” ‘0 ]
adots Tx adots Tx adots Tx adots Tx adots Tx
vE 4 vZs €2s €14 2z TeATs3ul
! aTqetIe)
(Fuswbas 3seT ut 3deox3d) 0ZZ 0 = xu ‘s,s81ad =3ewtxoaddy 7 319el
i - . - TR - .r-(w.ﬂ.v\."!.l‘!..



Table 3
T e () R (T_) L (7)) lc*(ry-"(T.)| | Posteri
A - osterior

} s ST (1) S (2) S () ( s s ;
-

8 14.00 14.3667 21.00 .3667 .0262
i
6.75 17.4375 17.6992 27.25 .2617 L0150 !
4 34.6250 35.0719 48 .00 .4469 .0129 ‘

(') Opt. solution of gquadratic function
() Opt. solution of FDIS
(3) Opt. solution of "crude" linear approximation

between 2.. and u...
1) 1]

Interval Width

13.2667 < ¢ (8) < 14.0308 0.7641
*

16.5992 < C (6.75) < 17.5338 0.9346

33.9719 < € (4) < 34.7203 0.7484
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Table 5 Improved FDIS for Activity (2,3)
yk—l yk -k c (§k)

0 .75 .375 -5.25

0.75 1.50 .125 -3.750
1.50 2.25 .875 -2.250
2.25 3.00 .625 -0.750
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Table 8 Parameters of Network Under
C(y) = a/(b + ry)

y Activity Qij uij aij bij rij
(1,2) 0 4 57 3 4

‘ (1,3) 0 5 116 4 5
(2,3) 0 3 10 1 3

(2,4) 0 4 36 2 4

(3,4) 0 4 17 1 4
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Table 9 Forward Spline for €0 = 0.22,
Activity (2,3)

yk -k mk ek
0.00 = - -
0.126214 0.058052 -21.760562 €0
0.340470 0.223124 -10.765040 €9
0.748720 0.520535 - 4.571900 €0
1.681883 1.143343 - 1.528651 €9
3.00 2.258459 - 0.496225 0.0816
(4.659654)

yk: kth knot value

§k: kth value of point of max. error
s slope C'(y) evaluated at ?k

(The last number in parenthesis is the original knot if
the value of y were not bounded.)




Table 10 Backward Spline with €q = 0.22,
Activity (2,3)

k -k k k

Y Yy m
3.00 _ _ _
1.211247 1.935700 -0.647425 €0
0.554096 0.837438 -2.431836 €0
0.241950 0.381176 -6.529248 €0
0.069616 0.148133 -14.379588 €9
0.00 0.013118 -27.771252 0.355976
(-0.035459)

'J‘:’\. - .

e e




Table 11 Forward Spline for €1 = 0.192373,
Activity (2,3)

k Yk §k m* K

0 0.00 - - -
i 1 0.115999 0.053678 -22.255222 €y

2 0.305046 0.202245 -11.620695 €4

3 0.644340 0.456683 ~ 5.340799 €

4 1.348390 0.948921 - 2.027357 €
. 5 3.00 2.034312 - 0.594628 0.166357
E (3.214741)

. A we
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Table 12 Forward Spline for e, = 0.187169,
Activity (2,3)
" yk §k - S K
N 0 O - - -
1 0.114035 0.05281 ~22.352924 €,
2 0.298424 0.198285 ~11.794044 €5
3 0.625641 0.445023 ~ 5.502014 €,
4 1.292741 0.915411 - 2.137625 €5
’ 5 3.00 1.994809 - 0.614978 0.186414
(3.005834)
] B




Table 13 Forward Spline for €y = 0.187018,
Activity (2,3)

K ; yk §k mX Ck
; 0 | 0.00 - - -

1 0.113978 0.052806 ~-22.355783 €3

2 0.298232 0.198180 -11.799138 €5

3 0.625102 0.444686 - 5.506778 €3

4 1.291157 0.914452 - 2.140912 €3
E 5 3.00 1.993678 - 0.615576 €3
‘; (3.000008) (Deviation < 107°)

:
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Table 15 VFDIS Appreximation for Cly) = a/(b+ry)
T, = 8 T = 6.75 Ty T 4.00
FDIS Cost 12.5729 13.8444 20.7589
Y1, 2 | 4.0 ! 2.750 1.8600
|
Yy 3 ! 5.0 4.96784 ! 3.1512
4 | '
i 1
Yy 4 > 2.21784 ! 2.21874 1.2912
[4 | y
V t |
Y2'4 : 4.0 : 4.00 : 2.1399
1 g |
Y3 4 \ 1.78216 | 1.78216 0.84876
t ’ | ;
i | — -
11.6528 c*(8) < 12.3980
12.9243 < C¥(6.75) < 13.4917
19.8388 < C*(4.0) < 21.6742
- -
S
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